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Abstract: This paper proposes an extended negative selection algorithm for

anomaly detection. Unlike previously proposed negative selection algorithms which

directly construct detectors in the complementary space of self-data space, our

approach first evolves a number of common schemata through coevolutionary

genetic algorithm in self-data space, and then constructs detectors in the

complementary space of the schemata. These common schemata characterize self-

data space and thus guide the generation of detection rules. By converting data space

into schema space, we can efficiently generate an appropriate number of detectors 

with diversity for anomaly detection. The approach is tested for its effectiveness

through experiment with the published data set iris. 

1 Introduction

The natural immune system has inspired scientists a great research interest because of

its powerful information processing capability. It protects biologic bodies from

disease-causing pathogens by pattern recognition, reinforcement learning and

adaptive response[1]. The idea of applying computational immunology to the problem

of computer/network security derives from the inspiration that virus, network

intrusion is analogous to pathogens to human bodies[2]. By generating a number of

detectors to monitor every data packet in a  network or to monitor every transaction

data in a  financial system, an anomaly detection system detects, notifies and

automatically responses to anomalous activities.

Negative selection algorithm, proposed by Stephanie Forest and her research group

in 1994, has been considered to be a highly feasible technique to anomaly detection

and has been successfully applied to computer viruses/ network intrusion detection[3],

tool breakage detection[4], times-series anomaly detection[5], and Web document

classification[6]. The most striking features of the algorithm are that it does not

require any prior knowledge of anomalies and can implement distributed anomaly

detection in a  network environment. For a  given data set S to be protected, a  set of

detectors R is generated in a way that each detector d (a binary string) does not match

any string s in S. The negative selection algorithms work in a straightforward way to

generate the repertories R. It randomly generates a string d and matches d against each
string in S. If d  does not match any string in S  then store d  in R. This process is

repeated until we have enough detectors in R to ensure the desired protection. This

generate-and-test method requires sampling a  quite large number of candidate
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detectors and the computational complexity is exponential to the size of self data set S

[7]. 

Variations of negative selection algorithm have also been investigated mainly

focusing on representation schemes, detector generation algorithm and matching

rules. Representation scheme has been explored including hyper-rectangle-rule

detectors[8], fuzzy-rule detectors[9], and hyper-sphere-rule detectors[10]. Their 

corresponding detector generation algorithms are negative selection with detection

rules, negative selection algorithm with fuzzy rules and randomised real-valued

negative selection. Match rules in negative selection algorithm include r-contiguous

matching, r-chunk matching, Hamming distance matching, and its variation Rogers

and Tanimoto matching[11].

The problem that negative selection algorithms face is how to efficiently generate 

an appropriate number of detectors. The generate-and-test approach has the drawback

of exponentially computational complexity with respect to the size of self data. The 

computational cost may be intolerable when the size of self data, especially the

dimen sion size, is large. In this paper, we propose an extended negative selection 

algorithm which combines computational immunology and coevolutionary genetic

algorithm for anomaly detection. Unlike previously proposed negative selection

algorithms that directly construct detectors in the complementary space of self data

space, it first transforms self-data space into self-schema space by evolving a group of 

schemata in self-data space, and then creates an appropriate number of detectors in

the schema complementary space with the guidance of the common schemata

evolved. By compressing self data space into self schema space, we can efficiently

generate an appropriately sized set of detectors with diversity for anomaly detection.

The rest of the paper is organized as follows. In section 2, first, the GA schema

and the representation of real-valued based detector and schema are introduced, and 

then a coevolutionary genetic algorithm for acquiring schemata from self data space is

presented. Section 3 describes the extended negative selection algorithm. Section 4

demonstrates some experimental results, and section 5 presents the conclusions.

2 From Data Space to Schema Space

2.1 GA Schema

What is a GA schema? A GA schema can be viewed a template specifying groups of

chromosomes with a  common characteristic, or a  partition of genome space, or a

description of hyperplanes through genome space or a  set of search points sharing

some syntactic feature. A schema is usually represented as a string of symbols taken

from the alphabet {0,1,#}. The character #  is explained as “don’t care”, so that a

schema represents a  common pattern contained in a  number of chromosomes. For

example, a number of chromosomes contain a schema 1#00##11 as follows:

1 1 0 0 0 0 1 1

1 0 0 0 1 0 1 1

···············

1 1 0 0 0 1 1 1
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The number of non-# symbols in a schema H is called the order O(H), and the

distance between the outermost two non-# symbols is called the defining length L(H)

of the schema. The length of a schema is important because it determines the

likelihood of a member of the schema being disrupted by crossover--the further apart 

its genomes are, the less likely they are to stay together. Suppose the length of 

individuals be l, accordingly the number of variable genes in a chromosome is l-O(H).

In general, GAs employ binary encoding schemes, so the total search space is 2l
, 

where l denotes the length of chromosomes. If there exists one gene which is

important and keeps invariable at the same position of all the chromosomes, the total

search space is reduced to the half, and is further reduced to 2l-k
 if there are k such

important genes. In the process of evolution, a new schema is likely to be created by

mutation rather than by crossover. Holland’s schema theorem explains how schemata

are expected to propagate from generation to generation by selection, crossover and

mutation. Schemata theorem is also used to explain why GAs realise an optimum 

search strategy[14].

Generally there is more than one schema in the searching space. Each schema

represents a common pattern hidden in a group of individuals. And one individual

may be covered by multiple schemata. For example, considering in the three 

dimensional space of 2l=3
(see Figure 1), there are six surface hyperplains, each of 

which has one fixed gene at the same position of the four chromosomes such that a

schema can be derived. The top hyperplain has the schema: #1# and the front

hyperplain contains the schema: ##1. The two diagonal hyperplains do not form

schemata.

Finding common schemata is also inspired from the natural immune system. Bacteria 

are inherently different from human cells, and many bacteria have cell walls made

from polymers that do not occur in humans, so we can expect the immune system to

recognize bacteria partially on the basis of the existence of these unusual 

molecules[15]. Common schemata represent generic properties of the antigen 

population. With this as motivation, we can construct antibodies which are

complementary to the antigens in the bits of schema so that one antibody can

recognise multiple antigens. This may explain to some extent why the natural immune

(000)

(111)

(001)

(011)

(110)
(010)

(100)

(101)

Fig. 1. Individuals and schemata in three dimensional space
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system is able to recognize an enormous number of foreign pathogens with relatively 

limited resources.

2.2 Representation of Schemata

In this section, we first introduce the notation of anomaly detection, and then we

present the representations of detectors and schemata which characterise both self and

non-self data space.

A problem space S=x1×x2×···×xn is a n-dimensional vector space, where xj is either

a categorical feature or a numeric feature. s1
*, s2

*,···, sn
*
 are the definite states in the

space S, where *∈{normal, abnormal}. The normal state subspace is called self-state

set denoted by SS⊂ S, and the non-self state subspace NS is defined as the

complement space of SS and thus NS=S− SS. The two subspaces are described as 
follows:

 Self- state space:  SS={ si
*
| *= normal , i=1,2,,,p}

Non-self space:  NS={ sj
*
| *= abnormal, j=1,2,,,q}  

where SS∪NS=S and SS∩NS=∅. 

The characteristic function selfχ for differentiating self and non-self is defined as

follows:










∈

∈

=

NSsif

SSsif
s

j

j

jself
,0

,1

)(χ

As we mentioned above, a detector can be represented as a detection rule, the

structure of which is described as follows:

abnormalvalvalxdxvalvalx mm

mjj →∈∧=∧∧∈ ],[...],[
21

1

2

1

11

abnormalvalvalxdxvalvalx mm

mjj
→∈∧=∧∧∈ ],[...],[

43

1

4

1

31

where ],[
21

ii
i valvalx ∈ represents that feature xi is a real-valued feature and 

jj dx = indicates that  feature xj is a categorical feature. Each rule(self or non-self)

defines a hypercube which covers some states in the descriptor space, The detection

rules cover non-self data space, while self rules characterise self-data space (see 

Figure 2). 
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In reality, both self data space and non-self data space contain schemata.

Generally, abnormal events of the same kind may have common characteristics which 

can be considered as common schemata. These common schema ta represent the

dimension-reduced subspace to which the abnormal events belong. The same situation 

exists in self data space, that is, there may be some characteristic subspaces, each of 

which may contain a schema. For example, we get three rules which characterize

normal events as follows:

normalvalvalxvalvalxvalvalxvalvalx →∈∧∈∧∈∧∈ ],[],[],[],[
4

2

4

14

3

2

3

13

2

2

2
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normalvalvalxvalvalxvalvalxvalvalx →∈∧∈∧∈∧∈ ],[],[],[],[
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normalvalvalxvalvalxvalvalxvalvalx →∈∧∈∧∈∧∈ ],[],[],[],[
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The common schema induced from the above three rules is:

],[],[
2

2

2

12

1

2

1

11
valvalxvalvalx ∈∧∈

Definition 1. A real-valued based representation of a schema r is defined as the

conjunction of feature-interval pairs as follows:

],[...],[
21

1

2

1

11

kk

k valvalxvalvalxr ∈∧∧∈=

Definition 2. The coverage of a schema r is defined as the ratio of the number of self

states contained in the hypercube determined by r to the total number of self states in

self-state space SS:

SS

rsSSs
rCoverage

ii }{

)(

∈∈

= (1)

Fig. 2. A two-dimension space characterised by schemata

Self

Non-self
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Definition 3. The volume of the hypercube that a schema r = ],[
1

2

1

11
valvalx ∈  and 

… and ],[
21

ll

l valvalx ∈ determines is represented as:

∏
=

−=

l

i

ii valvalrVolume
1

12
)()( (2)

Since each numeric variable is normalized between 0 and 1, the volume that a schema

determines is less than 1, and the longer a schema is, the smaller of the volume it

determines. Thus the fitness of a schema r is represented as:

)()()( rVolumerCoveragerfitness βα += (3)

where α,β are the weights and α+β =1.

2.3 Finding Common Schemata by Coevolutionary GA

We use coevolutionary genetic algorithm to evolve a  number of schemata that are

randomly initialised and will finally cover the entire self-data space.

In [15], Stephanie Forrest et al. proposed and solved a  problem that whether or

not the conventional GAs can find multiple common schemata. As we know that the

conventional GAs have the property of convergence, we face the problem that how

conventional GAs can maintain multiple sub-population, or how conventional GAs

can find multiple peaks in the meantime. Their experiments showed if the population

of chromosomes are initialised with schemata of the correct answers, GAs can

maintain the correct schemata after some generations. But the right problem to be

solved is “Can the conventional GAs find all the schemata in different parts of the

space with a  randomly initialised population?” and if can, then “what are the key

parameters?”. They found that the conventional GAs can discover and maintain

multiple schemata, and also found the population size is an important parameter to

maintain the diversity, that is, a  bigger size of population can find more schemata.

Further more, the mutation rate plays an important role in maintaining the diversity of

the population.

In this paper, we exploit coevolutionary genetic algorithm proposed by Potter and

De Jong in [16]. The population consists of a  number of non-interbreeding

subpopulation of species. Each species represents only a  partial solution to the

problem, and there is neither cooperation nor competition among subpopulations.

Although nothing explicitly prevent multiple subpopulations from containing the

identical schema, in practice, each subpopulation tends to be dominated by each

species. In our work, each subpopulation is randomly initialised with a species which

will converge on a specific schema after some generations of evolution. All the

schemata form a schema space of self data, and the detectors are produceded in the 

schema complementary space. This approach has been proven to use a variety of 

settings and has been applied to concept learning[16] and Web document

classification[6]. The chromosome is designed to be composed of 4 genes as follows.
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00110001 101011100011001010 000111000111000111 00001001

0.192 ### 011 ### 100 ### 010 3

The first 8-bit gene is the threshold. Its real value is calculated first by converting the

gene to a decimal integer and then dividing this integer by 255. A match between a

schema and an instance is considered to occur when the binding strength is greater

than the threshold. The pattern gene and the mask gene are the same length and are

combined to form a schema. To employ binary coding scheme, each numeric feature

is discretized into several different intervals, maximally 8 in our approach so that it

can be represented by a 3-bit binary string(000~111). Therefore, both the pattern and

the mask gene have 3 times bits as many as the number of the feature vector. The 

mask gene is used to overlaid the pattern gene, that is, a three-mask bits of “111” 

keeps the corresponding bit in the pattern gene unchanged, and a three-mask bits of 

“000” generates  a “don’t care ” schema value. The advantage that is captured by this

representation is the ability of a schema matching a wider range of instances. In this

way the schema is formed by copying the pattern gene and is modified by mutating

the mask gene. The last gene in the genome represents the order of the potential 

schema. Its value is the total number of non-# in the schema. As we mentioned above, 

each feature in our approach is represented by 3 binary bits, so the actual order of the

schema is the integer divided by 3. The fitness of each individual is calculated by

formula (3), and the algorithm for evolving schemata is described as follows:

Algorithm: Coevolutionary genetic algorithm for evolving schemata

Input :   A feature vector table, a group of parameters

Output: a group of schemata

 1     discretize numeric feature vector and encode in a binary string; 

 2     create the first species;

  3     while the number of species is less than a given number

4 For each species

  5    Bind each individual to all the feature vectors;

  6    Calculate each individual’s fitness;

  7   Do selection, crossover, and mutation;

  8 endfor 

 9 Calculate the total fitness of the population;

10  if the total fitness fails to increase for a few consecutive generations

11     add a new species to the population;

12     remove the individuals that do not contribute to the total fitness;

13    endwhile

14   decode each species into a common schema;

schema orderthreshold

Fig. 3. Binary scheme for evolving common schemata

threshold pattern mask order
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The algorithm starts with initializing a single species which represents a potential

common schema, and new species are added into the population till the total number

of species reaches the specified value. In each generation, the fitness of a  single

individual is determined by its binding ability, and the fittest individual in each

species is generated and then the total fitness of the population is calculated. Child

species are created by selecting two parents from the same species using fitness-

proportionate selection with balanced linear scaling, and then by using uniform

crossover and bit flipping mutation. As we mentioned above, the population tends to

maintain the correct schema if it has initially been given a correct schema, and also

has the capability to evolve out a  new schema in the case of being randomly

initialized.

3 Generating Detectors

We propose an extended negative selection algorithm in which detection rules are not

completely randomly generated. First, it prefers choosing the features that appear

more frequently in the set of schemata to the features that do not appear at all or

appear less frequently. The reason for this is that a feature occurring more frequently

in the schemata must be more important in the problem space and thus has a higher

likelihood to be included in the detection rules. That is, a frequently-occurred feature

with its infrequently-occurred interval-values is more likely to be selected into a

detection rule. Second, when a  detection rule is generated, it matches against the

common schemata (see Figure 4). If a rule does not contain any common schema, it is

considered as a detector and is stored in the detection rule set, otherwise it is rejected.

This process is repeated until an appropriate number of detection rules are obtained.

In the monitoring phase, each instance is matched against the detection rules. A

change is considered to be detected if any match occurs.

no

Self-data set

Coevolutionary learning

Common schemata

Randomly

generated

detection rules

Match Detection rules

Reject

yes

Fig. 4. Diagram of generating detection rules
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4 Experimental Results

We perform this experiment with the published data set iris which consists of 5

numeric features and 150 instances. The last feature is the class label of three classes.

We use the 100 instances of class 1 and class 3 as self data, and take the 50 instances

of class 2  away as non-self data. Each of the four conditional numeric features is

discreted as maximally 8 different intervals and encoded by 3-bit binary strings. The

data set in coevolutionary phase includes the four conditional features of class 1 and

class 3. The experimental parameters are set up as: Species number=9, Species size=

100, crossover rate=0.6, mutation=0.3, threshold=1.0, α =  0.7 and β =0.3.

Table 1. Evolved common schemata covering class 1 and class 3

No. Schema Class Coverage Fitness

1 PL∈[1.00, 1.90] and PW∈[0.10, 0.40] 1 0.49 0.371

2 PL∈ [5.00,5.60] and SL∈ [5.70, 6.30] 3 0.12 0.181

3 PL∈[5.00, 5.60] and SL∈ [6.40, 6.90] 3 0.13 0.182

4 PL∈[5.00, 5.60] and PW∈[1.80, 2.10] 3 0.14 0.182

5 PL∈[5.00, 5.60] and PW∈[2.20, 2.50] 3 0.08 0.110

6 PL∈[5.70, 6.90] and PW∈[1.80, 2.10] 3 0.09 0.114 

7 PL∈[5.70, 6.90] and PW∈[2.20, 2.50] 3 0.09 0.114 

8 PL∈[5.00, 5.60] and SW∈[2.40, 3.20] 3 0.22 0.298

9 PW∈[2.20, 2.50] and SL∈[6.40, 6.90] 3 0.09 0.113 

Fig. 5. Distributions of schemata and detectors in the two dimensional space
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It is interesting to find that 49 of 50 instances in class 1 are covered by the schema:

PL∈[1.00, 1.90] and PW∈[0.10, 0.40], and a group of schemata for class 3 are 

produced after some generations of evolution. Note that the binding threshold is setup

to 1.0, which means an exact matching between a schema and an instance is required.

In the second phase, the schemata guide the generation of the detection rules by

getting rid of any detector which matches any of the above schemata. Eight generated

detection rules are shown in Table 2, and the schemata and detectors are distributed in

the two dimensional space showed in Figure 5, from which we can see that some

small schemata and detectors can be merged into big ones. The transparent rectangles

are the schemata in the two dimensional self data space, while the gray-filled

rectangles are the detection rules.

The number of instances detected by each detection rule is shown in the left chart of

figure 6 and the total number of instances detected by all the detection rules exceeds

50, which means some instances are detected by more than one detectors. The right

curve shows the detection rate and the false alarm rate, which are computed at

different numbers of detectors. The first false positive error begins to occur when the

number of detectors exceeds 7, which means a self data is detected as an anomaly.

The false alarm rate increases as the number of detection rules grows.
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 1 PL∈[3.00, 3.60] and PW∈[0.90, 1.20] → class 2

2 PL∈[3.70, 4.30] and PW∈[0.90, 1.20] → class 2

3 PL∈[3.70, 4.30] and PW∈[1.30, 1.50] → class 2

4 PL∈[4.40, 4.90] and PW∈[1.30, 1.50] → class 2

5 PL∈ [3.70,4.30] and SW∈[2.40, 3.20] and SL∈[5.00, 5.60]→ class 2

6 SL∈[5.00, 5.60] and PW∈[0.90, 1.20] → class 2

7 PL∈[3.00, 3.60] and SL∈ [5.00, 5.60] and PW∈[0.90,1.20]→ class 2

8 SL∈[5.70,6.30]  and PW∈[1.60, 1.70] → class 2

Table 2. Generated detection rules
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Fig. 6. Coverage of each detection rule(left), detection rate and false alarm
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5 Conclusions and Discussions

To overcome the drawback of inefficiency that is created by the approach generate-

and-test, we propose an extended negative selection algorithm for anomaly detection,

which first evolves a number of common schemata through coevolutionary genetic

algorithm in self-data space, and then constructs detectors in the schema

complementary space. These common schemata characterize self-data space and thus

guide the creation of detection rules. We use the published data set iris to test the

effectiveness of our approach. The preliminary conclusions are obtained as follows:

• Converting data space into schema space and then constructing detectors in 

the schema complementary space is a novel and effective method. It 

eliminates the exponentially computational cost that is created by generate-

and-test.  

• Some methodologies of computational intelligence can be exploited to learn

schemata from self data set. In this paper, we use coevolutionary genetic

algorithm to evolve a group of schemata in the self data space.

• The discreteness of numeric features affects the number of schemata evolved

and thus affects the number of the final detection rules. Generally, the more

intervals a numeric feature is discretized, the more schemata and thus the

more detection rules are generated.

• Our approach does not rely on the structured representation of the data and

thereby is applied to the problem of general anomaly detection.
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